Imbalanced Weak MHD Turbulence
نویسنده
چکیده
MHD turbulence consists of waves that propagate along magnetic fieldlines, in both directions. When two oppositely directed waves collide, they distort each other, without changing their respective energies. In weak MHD turbulence, a given wave suffers many collisions before cascading. “Imbalance” means that more energy is going in one direction than the other. In general, MHD turbulence is imbalanced. A number of complications arise for the imbalanced cascade that are unimportant for the balanced one. We solve weak MHD turbulence that is imbalanced. Of crucial importance is that the energies going in both directions are forced to equalize at the dissipation scale. We call this the “pinning” of the energy spectra. It affects the entire inertial range. Weak MHD turbulence is particularly interesting because perturbation theory is applicable. Hence it can be described with a simple kinetic equation. Galtier et al. (2000) derived this kinetic equation. We present a simpler, more physical derivation, based on the picture of colliding wavepackets. In the process, we clarify the role of the zero-frequency mode. We also explain why Goldreich & Sridhar claimed that perturbation theory is inapplicable, and why this claim is wrong. (Our “weak” is equivalent to Goldreich & Sridhar’s “intermediate.”) We perform numerical simulations of the kinetic equation to verify our claims. We construct simplified model equations that illustrate the main effects. Finally, we show that a large magnetic Prandtl number does not have a significant effect, and that hyperviscosity leads to a pronounced bottleneck effect. Subject headings: MHD—turbulence
منابع مشابه
Imbalanced Weak Magnetohydrodynamic Turbulence
WeakMHD turbulence consists of waves that propagate along magnetic field lines, in both directions. When two oppositely directed waves collide, they distort each other, without changing their respective energies. Each wave suffers many collisions before cascading; by contrast, in strong MHD turbulence, waves cascade on the same timescale at which they collide. ‘‘ Imbalance ’’ means that more en...
متن کاملStrong Imbalanced Turbulence
We consider stationary, forced, imbalanced, or cross-helical MHD Alfvénic turbulence where the waves traveling in one direction have higher amplitudes than the opposite waves. This paper is dedicated to so-called strong turbulence, which cannot be treated perturbatively. Our main result is that the anisotropy of the weak waves is stronger than the anisotropy of a strong waves. We propose that c...
متن کاملImbalanced Strong Mhd Turbulence
We present a phenomenological model of imbalanced MHD turbulence in an incompressible magnetofluid. The steady–state cascades, of waves traveling in opposite directions along the mean magnetic field, carry unequal energy fluxes to small length scales, where they decay due to viscous and resistive dissipation. The inertial–range scalings are well–understood when both cascades are weak. We study ...
متن کاملImbalanced Relativistic Force-free Magnetohydrodynamic Turbulence
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced M...
متن کاملStructure of Stationary Strong Imbalanced Turbulence
In this paper we systematically study the spectrum and structure of incompressible MHD turbulence by means of high resolution direct numerical simulations. We considered both balanced and imbalanced (cross-helical) cases and simulated sub-Alfvénic as well as trans-Alfvénic turbulence. This paper extends numerics preliminarily reported in Beresnyak & Lazarian 2008. We confirm that driven imbalan...
متن کامل